ON EQUILIBRIUM STABILITY OF AN
ELASTIC — VISCOPLASTIC MEDIUM

A, N, Sporykhin

We consider the stability of an elastic—~plastic medium when one part of the body is in an
elastic state and the other part in a plastic state.

The results obtained in [1] are generalized for the stability of a deformation of an elastic—viscoplas-
fic hardening medium, assuming that the whole body is in a plastic state.

Linearized relations are applied in studying the stability of a thick-walled tube subject to a planar
deformation under the action of an internal pressure for various cases of loading behavior, both "ollowing®
as well as "dead zone" type, for small deviations of the body from an unperturbed equilibrium,

An analogous problem was considered in [2] for a quasistatic formulation for a tube of an ideal plastic
hardening material, also in accord with the theory of small elastic—plastic deformations,

1. We consider the unperturbed equilibrium of a hardening elastic —plastic body of volume V, char-
acterized by a vector of displacements ui°(xk, 1), a stress tensor oij"(xk, t), and volume and surface force
vectors F;° and p;°s and we let x; (&, t) be the surface separating the domains of elastic and plastic behavior
of the medium.

The study of the stability of equilibrium of a pody of volume V reduces to the solution of variational
equations and corresponding boundary conditions [3], which, for the case considered here, have the form

(65 + ojusi),;+ Fi—puy+=0, (o + opusf)ny = pi* (1.1)
Components characteristic of the perturbed motion are denoted with a plus sign.

On the elastic—plastic boundary the stresses and displacements arecontinuous. From this it follows
that

(05 + a1V =0, [u + Uiz} ==0 (.7 =12 (1.2)
Here the square brackets denote the difference of corresponding quantities.
The defining variational relations may be written in the following forms [1]:
a) in the plastic zone
(2065 — */att (3h + 21) exids; — ¢ (Aewds; + 2pesf — o)
=N (heiidy; -+ 2pei; — 0i)] (55— cely — nell’) = 0

(L Mpo)(heiidss -+ 2 — 5if) + o (hesidy; + 2pe — o) t.3)
= k2 (hepndys -1 2peis — o) (s — cely — meid”) (s — ey — neiR”)
+ o (20055 — *aps (B + 218) e3*8;5)
b) in the elastic zone

65 = heyid,; -+ 2pef; (1.4)
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Here the deformations are connected with the displacements through the formulas
e = Yol + ik -+ w4+ unjui) (1.5)

Applying the method developed in Section 2 of [1], we can, in an analogous way, reduce the boundary
problems (1.1)-(1.5) to the study of a system of differential equations with constant coefficients,

Moreover, the equations of equilibrium and the boundary conditions on the surface (1.1) reduce to the
equations

i+ ol + Fi +p0tU; =0, (D + onlsp)ny = p; (1.8)

Hereafter we use the index p for quantities relating to the plastic domain and the index e for those
relating to the elastic domain.

From Eqs. (1.3) we obtain

» FATL] . o o .
Zij = Q"Ekkaii + zp'EiJ' R m —}?c T (Ekl "“‘1/3Emm‘5kl)(skl — Cek?l) ) 1.7

X (s5—cel), s=io

In the elastic domain we have the relations

285 = MEyydy; + 2y (1.8)
Moreover, from formulas (1.5) we obtain
Eyy="1yU;;+ U+ U U g ~+ U iU ky3) (1.9)
Conditions (1.2} assume the form
2+ 05xXal =0,  [U;+upXsl=0 (.10)

2. Consider a tube with radii r; and r,, subject to the action of an internal pressure p,

It is well known [3] that the character of the loading behavior for small departures of the body from
unperturbed equilibrium may have an essential influence on stability (instability).

In contrast to [2], where it was assumed that as the result of small perturbations the load does not
change its direction, we consider the case of a following load. In this case the right member of the second
of Eqgs. (1.6) has the form

pi=pU,,; (2.1)
The loaded and deformed state of the tube, made of a hardening elastic—viscoplastic material, in the
case of a plane deformation, is determined, up to the point of stability loss, by the expressions
0,7 = — Po+ (24 ¢o) [4ho In (1] &) — ¢oC (1 — a7?)]
597" = —Po+ (2 + co) &k (1 + In(r] o))+ coC 2 o), o =0

e = (kgr® — C) [12 2+ ¢p), e = — (ka—C)[r2(2+¢co), &b =0 (2.2)
Gre° == 0(1 - r-—a), 5980 = C (1 + r‘E)’ ‘ crg“ = 0‘1 u = Cl]r’ C= k0T21
o=ri|re

where r is the dimensionless flow radius. Here and in the sequel, all quantities having the dimension of
length are referred to the external radius ry; those having the dimension of stress are referred to the
shear modulus g and denoted with a zero subscript.

The radius of the elastic—plastic boundary vy satisfies the equation
A —co/ (2 +eo)a?) =4ln(y/a)/ (2 +co) —polko+1 (2.3)
We remark that the pressure at which the whole tube enters the plastic state is defined by the expres-
sion
P=—(2+c)y*(4lna — e/ a’)

The equilibrium equations (1.6) for the perturbation components (1.7), (1.8) may be represented, in
the case of a plane form for the stability loss, in the form
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2o+ T 20,0 T (20— 20) + (67U )
W g — 2 W a0+ Ury — 7 0,) 66 - 00, = 0
Zre,r +rt 29,6 - 2rt Zrﬂ - (6,°T g, 1) srt T (r W a9 + 2r Wy o + Uyy) (2.4)
+ 000 Ua=0, po=pr/p
From the condition (1.6) we obtain, taking note of Eq. (2.1),

?r‘:O, ?re-——O for r=1, r=« {2.5)
Conditions on the elastic—plastic boundary (1.10) are
[U=0, (Us]=0, [3,]=0, [Dw]=0 for r=rg (2.6)

For an incompressible material the relations (1.7 ), for the case considered, assume the form
Sr? = 201',?‘"{" ap{r™ (Urp + UG‘,% - Ur,?;}
S = 2r (U, + Usf) — ap [r (U7 + Us§) — U2 (2.7)
R =R+ Uk —rWUF,  ag=4] 2+ ¢ + lo7)
Correspondingly, from Eq. (1.8) for the elastic region ¥ = r = 1, we obtain
8, =207 S =2 (U +Uss), Des=rU 54 Ues—rU¢ (2.8)

We seek the solution in the region @ = r =< 7 in the form

UP = ¢ (r)cosmB, U = ¢y (r)sinmd (2.9)

After substituting the relations (2.9) into the equilibrium equations (1,6), noting thereby the relation~

ship (2.7) between the stresses and deformations and also the condition of incompressibility, we obtzin a
differential equation for the function ¢,(r)

r (1 6,2) 9@V 4 1216 + 682" + 56,#" - 2ra, 7] 9,
25— 2m? (1 — 2a5) + (3 — mA)(6,?° + aoP) - r (r6 5
+ 76,2 + rpg@)] 7 4 r{—1 — 2m? (1 + 6¢") (2.10)
+r(2—m)o, ! 4 2% ] + 3ripee?] "
G+ [ —2md - mt - m(m? 2y g L2 (1 — m?) py?] gy =0
Similarly we seek a solution in the region ¥ =< r = 1 in the form

US = fy(r)cosmbB, U = f,(r)sinmb (2.11)

In a manner analogous to that for the Eq. (2.10), we obtain for the function f;(r} the equation

r+ e ETY L6+ 6" + 56,7 + 2re L 1HT
+ 725 = 2m? + (3 —m?) (6, + 66”) + T (rpo@® + T 3 - 70,1 1
fri—1—2m (1 + &%)+ Irpge? +r (2 —m¥ o, + Zréc,j;] [AY
+ 1+ m? (m? - 2) (1 — 6") 4+ 12 (1 — m?) pe@®1 f; = 0

(2.12)

In Egs.(2.10) and (2.12) the stresses ¢°, 0°p and their derivatives are defined by the formulas (2.2),

If in the equilibrium Eqs. (1.6) we assume the terms containing the external load to be small, i.e., if
we neglect the difference between the geometry of the initial unperturbed state, whose stability is in ques—
tion, and the geometry of the other states close to it, and also if we assume that m =1, which corresponds
to the first critical force, we obtain from Egs, (2.10) and (2.12) the simplified equations

130, IV) - 672 - (34 g 4 po0r%) @V 4 (3 - dag + 3pp0™r®) ¢, 0= 0 (2.13)

PATY + 61 41 3+ p0??) 17+ (— 34 3p0’r?) A = 0 (2.14)

From Egs, (2.4), (2.7}, (2.8), (2.9), and (2.11), noting that the tube material is incompressible, we ob-
tain, for the case under consideration, the following relationships:
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a) in the plastic zone

28 = — [P | brgy ) - (— 2+ dag + po07r?) 11 + py@Prepy) cos B + KT
2 = — 1o + 4re 4 @2 + 0o 1 +po0rprleos 0+ K”
= — e + ¢;/") sin®

b) in the elastic zone

2 =—1Ph" + 4hO (= 24 po0¥r®) 1+ pooPrfy] cos 8 - K°
ESe = [rzfl(’”) -+ 47']:1(”) + (2 + powr?) f1(/) + pow?rf;) cos 6 + K°
D= —(h" + £)sino

where KP and K€ are determined from the boundary conditions

cos 0 la?p,(") 4o (6 — 4ag — pe0%a®) ¢1' +pe0’apy]l = K® for r=aq
08 0 [, (6 — pow?) /17 + pe0’fil = K*for 1+ =1

The boundary conditions (2.5) together with relations (2.15) and (2.16) yield
) +ap =0 for r=qa, HO +AH?=0 for r=1
From relations (2.6), (2.15),and (2.16) we find that for r =y
fi= @, fl(’) = cPl(’), f1(”) == @1(”)
c0s 8 [1° (9 — £17) + daotp )] + K* — K* = 0
The solution of Egs. (2.13) and (2.14) may be found in the form
o o
pu=(mrt 3 g Mo 4 1[5+ 3 M4,

n=1

ok e 2k
+[ 2 2i—kMk]A3+A4
n=1
=) (L VB —40 VB L VI

+ (Y Y (r V) — 4G VB Yo (r VD) Co +17%C5+.Cy

M= (— )" (n — k /2

*+ b= pﬂwz

ﬁ [(al——3—ak/2)—|-—(2l—-1——-k)(l—1—k/2)(2l+3——k)]
1=1

E=2YT—dy a=23"14ag My=M_yfor k== —Fk My=M,for k=0

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

Herel, Y, (v =2,3) are Bessel functions of orders one and two, and C; and A4 (i=1,..,4)are

v
constants of integration.

If we substitute the quantities (2.20) and (2.21) into the relations (2.18) and (2.19), we obtain a linear
homogeneous system of algebraic equations in six arbitrary constants. Since in the case involving a loss

of stability this system must have a nonzero solution, its determinant must vanish, i.e.,
|aikl =0 (i,k = 1, 2, ey 6)

Here

wn =Y LB~ /B, o= [L0VD - e na V)

— 1
ay = 0, agn = I, (T'Vb)’ g =

Vi LxV®—1l; (x V)
an= 16— (VB)+(b—2— 4V D) (VB — [V B — =D (1B}

Gp="4%, Gi3=772 =0, Gp=—27"% az5=—~01" aup="7(4—Db)+24r"

=0, Gp= — {— %T"k -+ 2 2n1—k Mk'r%"k]
n=1
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g == — ;k; + 21 (2n — k) Myoem—*, @yg = ~ [T’k -+ 2 Mk’\’m”k]

n==} n==],

t= FEL S @r—k— ) Mg, ag— — {H[(& 1)k +2)

’Yk ey

Ak 4) (= 2 day b — B2 B Ry
LS

day [y o 3 Myt (e (kR 2T

n=1

+ D} (@n—k—1) @2n —k— 2) My

n=1

o
am*""[in'l’ + Z %Mﬂ’“}, Qg == —"T[“‘éﬁl“é%ﬁ'“ ba® (1 +-Ina)

A==l

42 ROMOW%] ot - 4a, [1 + 2 Mo')’zn]-i— > 2n—1)@2n—2) Mgy - 2

n=1i Ty =],

Ry = — 2+ 4ag + ba® - ba] (2n — k) + (20 — k — 1)(2n — k + 2)

Further, we note that the elements of the second column of the determinant coincide with the corre~
sponding elements of the first column if in these latter we replace the Bessel function of the first kind T,
by the Bessel function of the second kind Y,,. The elements of the fifth column may be obtained from the
elements of the sixth if in the latter we formally replace k by —k; and, finally, the elements of the fourth
column may be obtained from the elements of the fifth for k = 0, except for the elements a,, and a4, which
are as shown above. In Fig. 1 we show the dependence of the critical pressure pyon @ for 0.1 < py = 1,
0 =¢y=1,ky=01and v =1, The magnitude of the elastic—plastic boundary y corresponding to the crit-
ical load p, for these values of py, ¢y, kg and 7 is presented in Fig. 2a, We remark that as k, decreases
the size of the critical pressure decreases, which follows from Eq. (2.3), since p, nko{ ... }; and the for-
mulation of py as a function of « for 0 < k4 < 1is readily made.

The assumption that loss of stability may occur in accord with the type of static instability leads fo
essgential simplifications.

Without making the intermediate calculations, we merely indicate that the equation for determining
the critical pressure is obtained upon expanding the determinant (2.22), which in the given case has the
following elements:

ay=Iny, oy =1, a5 = —1, a9 = —2(1 +2y), a5 =ay =0
@y = V%, Ggy = @5y = 297, Qg = —12y, a5, = 0, ag, = 1
Qg = V7 Gy = — 2977, Ay = 6Y7%, agg = —12y (1 — 29), 055, = 0, 2y =1
ay = —Iny, gy = —1, ¢ =1, e =201 +2¢, (1 —ya™ 4 2y¢7H
G5y = Gy = 0, ay; = —sin (kln vy}, a5 = —k cos (kln y)
(2.24)
ags = k(ksink Iny +cosk Iny), ay =3k (sinklny — yatsink
dng) 52— E dag) (coskIny — ya ™ cosk Ing) + 6kya™ coskln
ag; = sin k In g, ags = 0, a3 = —cosklny
@y =ksinklny, @u==Fh{kcosklny—sinklny)
age = 3k*(cosklny —ya T cosklng) — k(2 — 4 +4a) (sinklny
—yutsinkIng) — Gkya T sin-kIn g, @ = cosklng, =10

Consideration of the static problem, corresponding to the system (2.4) with the conservative boundary
conditions (1.6}, leads to a determinant whose elements coincide withthe elements (2.24), except for the elements

Qo =2 H4ao (1 —ya™) + (4 — po) va G54 = —Psg
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ay; =3k (sinkIny —yalsinklng) - k(2 — & + 4ap) (cosklny
—yatcosklng) 4-(6 — po) kyatcosklna
ass = (1 +po) ¥ sinklng — pok cosklnq, a = 3k (cosklny
— yo "t cos kIn g)— k(2 — k2 - 4ag) (sin klny — yo ™t sin & In o) (2.25)
— (6 — pg) kyatsinklng
aze = (1 4 po) k*cosklng -+ po ksinklng

Fig. 3 shows the dependence of the critical values of p; and v on @ for Eq. (2.22) with the coefficients
(2.25) (continuous curves), and for Eq. (2.22) with the elements (2.24) (dashed curves).

As is evident from Fig, 2b and Fig. 3, the magnitude of the critical force, calculated using the con-
servative boundary conditions, does not differ significantly from that calculated using the nonconservative
boundary conditions.

A comparison with [2] (for k, = 0,01732 and ¢, = 0) shows that the magnitude of v is somewhat less
than it is in [2].

From Figs. 1 and 3 it follows that the presence of viscosity for the plastic deformations diminishes
the size of the critical force, i.e., viscosity has a destabilizing effect on the tube,

All computations employed in making the graphs were obtained using the M-20 electronic digital com-
puter,
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